-
Notifications
You must be signed in to change notification settings - Fork 12.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[TTI][RISCV] Implement cost of some intrinsics with LMUL #117874
base: main
Are you sure you want to change the base?
Conversation
Intrinsics include: sadd_sat/ssub_sat/uadd_sat/usub_sat/fabs/fsqrt/cttz/ctlz/ctpop
@llvm/pr-subscribers-backend-risc-v @llvm/pr-subscribers-llvm-analysis Author: LiqinWeng (LiqinWeng) ChangesIntrinsics include: sadd_sat/ssub_sat/uadd_sat/usub_sat/fabs/fsqrt/cttz/ctlz/ctpop Patch is 73.35 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/117874.diff 5 Files Affected:
diff --git a/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp b/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp
index 8f0ef69258b165..e2cd71fb5a9f40 100644
--- a/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp
+++ b/llvm/lib/Target/RISCV/RISCVTargetTransformInfo.cpp
@@ -1013,20 +1013,78 @@ RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::fabs:
+ case Intrinsic::usub_sat: {
+ auto LT = getTypeLegalizationCost(RetTy);
+ if (ST->hasVInstructions() && LT.second.isVector()) {
+ unsigned Op;
+ switch (ICA.getID()) {
+ case Intrinsic::sadd_sat:
+ Op = RISCV::VSADD_VV;
+ break;
+ case Intrinsic::ssub_sat:
+ Op = RISCV::VSSUBU_VV;
+ break;
+ case Intrinsic::uadd_sat:
+ Op = RISCV::VSADDU_VV;
+ break;
+ case Intrinsic::usub_sat:
+ Op = RISCV::VSSUBU_VV;
+ break;
+ }
+ return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
+ }
+ break;
+ }
+ case Intrinsic::fabs: {
+ auto LT = getTypeLegalizationCost(RetTy);
+ // FIXME: not get the correct cost about the llvm.sqrt.vxbf16
+ // LT.second is promote llvm::MVT::f32
+ if (ST->hasVInstructions() && LT.second.isVector()) {
+ // lui a0, 8
+ // addi a0, a0, -1
+ // vsetvli a1, zero, e16, m1, ta, ma
+ // vand.vx v8, v8, a0
+ if (LT.second.getVectorElementType() == MVT::bf16 ||
+ (LT.second.getVectorElementType() == MVT::f16 &&
+ !ST->hasVInstructionsF16()))
+ return LT.first * getRISCVInstructionCost(RISCV::VAND_VX, LT.second,
+ CostKind) +
+ 2;
+ else
+ return LT.first *
+ getRISCVInstructionCost(RISCV::VFSGNJX_VV, LT.second, CostKind);
+ }
+ break;
+ }
case Intrinsic::sqrt: {
auto LT = getTypeLegalizationCost(RetTy);
- if (ST->hasVInstructions() && LT.second.isVector())
- return LT.first;
+ // FIXME: not get the correct cost about the llvm.sqrt.vxbf16
+ // LT.second is promote llvm::MVT::f32
+ if (ST->hasVInstructions() && LT.second.isVector()) {
+ SmallVector<unsigned, 3> Opcodes;
+ if (LT.second.getVectorElementType() == MVT::bf16)
+ Opcodes = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFSQRT_V,
+ RISCV::VFNCVTBF16_F_F_W};
+ else if (LT.second.getVectorElementType() == MVT::f16 &&
+ !ST->hasVInstructionsF16())
+ Opcodes = {RISCV::VFWCVT_F_F_V, RISCV::VFSQRT_V, RISCV::VFNCVT_F_F_W};
+ else
+ Opcodes = {RISCV::VFSQRT_V};
+ return LT.first *
+ getRISCVInstructionCost(RISCV::VFSQRT_V, LT.second, CostKind);
+ }
break;
}
case Intrinsic::cttz:
case Intrinsic::ctlz:
case Intrinsic::ctpop: {
auto LT = getTypeLegalizationCost(RetTy);
- if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector())
- return LT.first;
+ if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector()) {
+ unsigned Op = (Intrinsic::cttz) ? RISCV::VCTZ_V
+ : (Intrinsic::ctlz) ? RISCV::VCLZ_V
+ : RISCV::VCPOP_V;
+ return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
+ }
break;
}
case Intrinsic::abs: {
diff --git a/llvm/test/Analysis/CostModel/RISCV/fp-min-max-abs.ll b/llvm/test/Analysis/CostModel/RISCV/fp-min-max-abs.ll
index 0b2c8da4438da2..6259c31a08bc1f 100644
--- a/llvm/test/Analysis/CostModel/RISCV/fp-min-max-abs.ll
+++ b/llvm/test/Analysis/CostModel/RISCV/fp-min-max-abs.ll
@@ -7,22 +7,22 @@ define void @fabs() {
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %1 = call float @llvm.fabs.f32(float undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %2 = call <2 x float> @llvm.fabs.v2f32(<2 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %3 = call <4 x float> @llvm.fabs.v4f32(<4 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %4 = call <8 x float> @llvm.fabs.v8f32(<8 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %5 = call <16 x float> @llvm.fabs.v16f32(<16 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %4 = call <8 x float> @llvm.fabs.v8f32(<8 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %5 = call <16 x float> @llvm.fabs.v16f32(<16 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %6 = call <vscale x 1 x float> @llvm.fabs.nxv1f32(<vscale x 1 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %7 = call <vscale x 2 x float> @llvm.fabs.nxv2f32(<vscale x 2 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %8 = call <vscale x 4 x float> @llvm.fabs.nxv4f32(<vscale x 4 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %9 = call <vscale x 8 x float> @llvm.fabs.nxv8f32(<vscale x 8 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %10 = call <vscale x 16 x float> @llvm.fabs.nxv16f32(<vscale x 16 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %8 = call <vscale x 4 x float> @llvm.fabs.nxv4f32(<vscale x 4 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %9 = call <vscale x 8 x float> @llvm.fabs.nxv8f32(<vscale x 8 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %10 = call <vscale x 16 x float> @llvm.fabs.nxv16f32(<vscale x 16 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %11 = call double @llvm.fabs.f64(double undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %12 = call <2 x double> @llvm.fabs.v2f64(<2 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %13 = call <4 x double> @llvm.fabs.v4f64(<4 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %14 = call <8 x double> @llvm.fabs.v8f64(<8 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %15 = call <16 x double> @llvm.fabs.v16f64(<16 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %13 = call <4 x double> @llvm.fabs.v4f64(<4 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %14 = call <8 x double> @llvm.fabs.v8f64(<8 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %15 = call <16 x double> @llvm.fabs.v16f64(<16 x double> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %16 = call <vscale x 1 x double> @llvm.fabs.nxv1f64(<vscale x 1 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %17 = call <vscale x 2 x double> @llvm.fabs.nxv2f64(<vscale x 2 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %18 = call <vscale x 4 x double> @llvm.fabs.nxv4f64(<vscale x 4 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %19 = call <vscale x 8 x double> @llvm.fabs.nxv8f64(<vscale x 8 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %17 = call <vscale x 2 x double> @llvm.fabs.nxv2f64(<vscale x 2 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %18 = call <vscale x 4 x double> @llvm.fabs.nxv4f64(<vscale x 4 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %19 = call <vscale x 8 x double> @llvm.fabs.nxv8f64(<vscale x 8 x double> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void
;
call float @llvm.fabs.f32(float undef)
@@ -48,17 +48,29 @@ define void @fabs() {
}
define void @fabs_f16() {
-; CHECK-LABEL: 'fabs_f16'
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %1 = call half @llvm.fabs.f16(half undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %2 = call <2 x half> @llvm.fabs.v2f16(<2 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %3 = call <4 x half> @llvm.fabs.v4f16(<4 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %4 = call <8 x half> @llvm.fabs.v8f16(<8 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %5 = call <16 x half> @llvm.fabs.v16f16(<16 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %6 = call <vscale x 2 x half> @llvm.fabs.nxv2f16(<vscale x 2 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %7 = call <vscale x 4 x half> @llvm.fabs.nxv4f16(<vscale x 4 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %8 = call <vscale x 8 x half> @llvm.fabs.nxv8f16(<vscale x 8 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %9 = call <vscale x 16 x half> @llvm.fabs.nxv16f16(<vscale x 16 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void
+; ZVFH-LABEL: 'fabs_f16'
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %1 = call half @llvm.fabs.f16(half undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %2 = call <2 x half> @llvm.fabs.v2f16(<2 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %3 = call <4 x half> @llvm.fabs.v4f16(<4 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %4 = call <8 x half> @llvm.fabs.v8f16(<8 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %5 = call <16 x half> @llvm.fabs.v16f16(<16 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %6 = call <vscale x 2 x half> @llvm.fabs.nxv2f16(<vscale x 2 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %7 = call <vscale x 4 x half> @llvm.fabs.nxv4f16(<vscale x 4 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %8 = call <vscale x 8 x half> @llvm.fabs.nxv8f16(<vscale x 8 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %9 = call <vscale x 16 x half> @llvm.fabs.nxv16f16(<vscale x 16 x half> undef)
+; ZVFH-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void
+;
+; ZVFHMIN-LABEL: 'fabs_f16'
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %1 = call half @llvm.fabs.f16(half undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 3 for instruction: %2 = call <2 x half> @llvm.fabs.v2f16(<2 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 3 for instruction: %3 = call <4 x half> @llvm.fabs.v4f16(<4 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 3 for instruction: %4 = call <8 x half> @llvm.fabs.v8f16(<8 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %5 = call <16 x half> @llvm.fabs.v16f16(<16 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 3 for instruction: %6 = call <vscale x 2 x half> @llvm.fabs.nxv2f16(<vscale x 2 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 3 for instruction: %7 = call <vscale x 4 x half> @llvm.fabs.nxv4f16(<vscale x 4 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %8 = call <vscale x 8 x half> @llvm.fabs.nxv8f16(<vscale x 8 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 6 for instruction: %9 = call <vscale x 16 x half> @llvm.fabs.nxv16f16(<vscale x 16 x half> undef)
+; ZVFHMIN-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void
;
call half @llvm.fabs.f16(half undef)
call <2 x half> @llvm.fabs.v2f16(<2 x half> undef)
diff --git a/llvm/test/Analysis/CostModel/RISCV/fp-sqrt-pow.ll b/llvm/test/Analysis/CostModel/RISCV/fp-sqrt-pow.ll
index be9c19dc59a852..446627f6bf3c0e 100644
--- a/llvm/test/Analysis/CostModel/RISCV/fp-sqrt-pow.ll
+++ b/llvm/test/Analysis/CostModel/RISCV/fp-sqrt-pow.ll
@@ -8,30 +8,30 @@ define void @sqrt() {
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %2 = call <2 x bfloat> @llvm.sqrt.v2bf16(<2 x bfloat> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %3 = call <4 x bfloat> @llvm.sqrt.v4bf16(<4 x bfloat> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %4 = call <8 x bfloat> @llvm.sqrt.v8bf16(<8 x bfloat> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %5 = call <16 x bfloat> @llvm.sqrt.v16bf16(<16 x bfloat> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %5 = call <16 x bfloat> @llvm.sqrt.v16bf16(<16 x bfloat> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %6 = call <vscale x 2 x bfloat> @llvm.sqrt.nxv2bf16(<vscale x 2 x bfloat> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %7 = call <vscale x 4 x bfloat> @llvm.sqrt.nxv4bf16(<vscale x 4 x bfloat> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %8 = call <vscale x 8 x bfloat> @llvm.sqrt.nxv8bf16(<vscale x 8 x bfloat> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %9 = call <vscale x 16 x bfloat> @llvm.sqrt.nxv16bf16(<vscale x 16 x bfloat> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %8 = call <vscale x 8 x bfloat> @llvm.sqrt.nxv8bf16(<vscale x 8 x bfloat> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %9 = call <vscale x 16 x bfloat> @llvm.sqrt.nxv16bf16(<vscale x 16 x bfloat> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %10 = call float @llvm.sqrt.f32(float undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %11 = call <2 x float> @llvm.sqrt.v2f32(<2 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %12 = call <4 x float> @llvm.sqrt.v4f32(<4 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %13 = call <8 x float> @llvm.sqrt.v8f32(<8 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %14 = call <16 x float> @llvm.sqrt.v16f32(<16 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %13 = call <8 x float> @llvm.sqrt.v8f32(<8 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %14 = call <16 x float> @llvm.sqrt.v16f32(<16 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %15 = call <vscale x 1 x float> @llvm.sqrt.nxv1f32(<vscale x 1 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %16 = call <vscale x 2 x float> @llvm.sqrt.nxv2f32(<vscale x 2 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %17 = call <vscale x 4 x float> @llvm.sqrt.nxv4f32(<vscale x 4 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %18 = call <vscale x 8 x float> @llvm.sqrt.nxv8f32(<vscale x 8 x float> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %19 = call <vscale x 16 x float> @llvm.sqrt.nxv16f32(<vscale x 16 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %17 = call <vscale x 4 x float> @llvm.sqrt.nxv4f32(<vscale x 4 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %18 = call <vscale x 8 x float> @llvm.sqrt.nxv8f32(<vscale x 8 x float> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %19 = call <vscale x 16 x float> @llvm.sqrt.nxv16f32(<vscale x 16 x float> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %20 = call double @llvm.sqrt.f64(double undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %21 = call <2 x double> @llvm.sqrt.v2f64(<2 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %22 = call <4 x double> @llvm.sqrt.v4f64(<4 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %23 = call <8 x double> @llvm.sqrt.v8f64(<8 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %24 = call <16 x double> @llvm.sqrt.v16f64(<16 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %22 = call <4 x double> @llvm.sqrt.v4f64(<4 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %23 = call <8 x double> @llvm.sqrt.v8f64(<8 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %24 = call <16 x double> @llvm.sqrt.v16f64(<16 x double> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %25 = call <vscale x 1 x double> @llvm.sqrt.nxv1f64(<vscale x 1 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %26 = call <vscale x 2 x double> @llvm.sqrt.nxv2f64(<vscale x 2 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %27 = call <vscale x 4 x double> @llvm.sqrt.nxv4f64(<vscale x 4 x double> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %28 = call <vscale x 8 x double> @llvm.sqrt.nxv8f64(<vscale x 8 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %26 = call <vscale x 2 x double> @llvm.sqrt.nxv2f64(<vscale x 2 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %27 = call <vscale x 4 x double> @llvm.sqrt.nxv4f64(<vscale x 4 x double> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 8 for instruction: %28 = call <vscale x 8 x double> @llvm.sqrt.nxv8f64(<vscale x 8 x double> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void
;
call bfloat @llvm.sqrt.bf16(bfloat undef)
@@ -71,11 +71,11 @@ define void @sqrt_f16() {
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %2 = call <2 x half> @llvm.sqrt.v2f16(<2 x half> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %3 = call <4 x half> @llvm.sqrt.v4f16(<4 x half> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %4 = call <8 x half> @llvm.sqrt.v8f16(<8 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %5 = call <16 x half> @llvm.sqrt.v16f16(<16 x half> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %5 = call <16 x half> @llvm.sqrt.v16f16(<16 x half> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %6 = call <vscale x 2 x half> @llvm.sqrt.nxv2f16(<vscale x 2 x half> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %7 = call <vscale x 4 x half> @llvm.sqrt.nxv4f16(<vscale x 4 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %8 = call <vscale x 8 x half> @llvm.sqrt.nxv8f16(<vscale x 8 x half> undef)
-; CHECK-NEXT: Cost Model: Found an estimated cost of 1 for instruction: %9 = call <vscale x 16 x half> @llvm.sqrt.nxv16f16(<vscale x 16 x half> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 2 for instruction: %8 = call <vscale x 8 x half> @llvm.sqrt.nxv8f16(<vscale x 8 x half> undef)
+; CHECK-NEXT: Cost Model: Found an estimated cost of 4 for instruction: %9 = call <vscale x 16 x half> @llvm.sqrt.nxv16f16(<vscale x 16 x half> undef)
; CHECK-NEXT: Cost Model: Found an estimated cost...
[truncated]
|
if (ST->hasVInstructions() && LT.second.isVector()) | ||
return LT.first; | ||
// FIXME: not get the correct cost about the llvm.sqrt.vxbf16 | ||
// LT.second is promote llvm::MVT::f32 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Not for this PR, but we probably want to handle the zvfhmin/zvfbfmin promotion for all intrinsics. We could pull this out of the switch statement later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I will create new pr deal with f16 && bf16
// FIXME: not get the correct cost about the llvm.sqrt.vxbf16 | ||
// LT.second is promote llvm::MVT::f32 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this comment still needed? The costs in the tests look correct
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
removed
!ST->hasVInstructionsF16()) | ||
Opcodes = {RISCV::VFWCVT_F_F_V, RISCV::VFSQRT_V, RISCV::VFNCVT_F_F_W}; | ||
else | ||
Opcodes = {RISCV::VFSQRT_V}; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Opcodes isn't used?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
fixed
@@ -1,28 +1,28 @@ | |||
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py | |||
; RUN: opt < %s -passes="print<cost-model>" 2>&1 -disable-output -S -mtriple=riscv64 -mattr=+v,+f,+d,+zfh,+zvfh | FileCheck %s --check-prefixes=CHECK,ZVFH | |||
; RUN: opt < %s -passes="print<cost-model>" 2>&1 -disable-output -S -mtriple=riscv64 -mattr=+v,+f,+d,+zfh,+zvfhmin | FileCheck %s --check-prefixes=CHECK,ZVFHMIN | |||
; RUN: opt < %s -passes="print<cost-model>" 2>&1 -disable-output -S -mtriple=riscv64 -mattr=+v,+f,+d,+zfh,+zvfhmin,+zvfhbmin | FileCheck %s --check-prefixes=CHECK,ZVFHMIN |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should this be +zvfbfmin?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
fixed
case Intrinsic::fabs: | ||
case Intrinsic::sqrt: { | ||
auto LT = getTypeLegalizationCost(RetTy); | ||
if (ST->hasVInstructions() && LT.second.isVector()) | ||
return LT.first; | ||
// TODO: add f16/bf16, bf16 with zvfhbmin && f16 with zvfhmin |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
// TODO: add f16/bf16, bf16 with zvfhbmin && f16 with zvfhmin | |
// TODO: add f16/bf16, bf16 with zvfbfmin && f16 with zvfhmin |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
sorry , fixed
@@ -1,28 +1,28 @@ | |||
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py | |||
; RUN: opt < %s -passes="print<cost-model>" 2>&1 -disable-output -S -mtriple=riscv64 -mattr=+v,+f,+d,+zfh,+zvfh | FileCheck %s --check-prefixes=CHECK,ZVFH |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you add zvfbfmin to the ZVFH run line too? I think that matches the other tests with bfloat
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done
call <2 x bfloat> @llvm.fabs.v2f16(<2 x bfloat> undef) | ||
call <4 x bfloat> @llvm.fabs.v4f16(<4 x bfloat> undef) | ||
call <8 x bfloat> @llvm.fabs.v8f16(<8 x bfloat> undef) | ||
call <16 x bfloat> @llvm.fabs.v16f16(<16 x bfloat> undef) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should be @llvm.fabs.v2bf16
?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
sorry , fixed
; CHECK-NEXT: Cost Model: Found an estimated cost of 0 for instruction: ret void | ||
; | ||
call half @llvm.fabs.f16(half undef) | ||
call <2 x bfloat> @llvm.fabs.v2f16(<2 x bfloat> undef) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you move the bf16 lines into the main @Fabs() test? The f16 tests were split out just to show the difference between zvfh and zvfhmin IIRC, which bf16 won't need
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
done
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, thanks
Intrinsics include: sadd_sat/ssub_sat/uadd_sat/usub_sat/fabs/fsqrt/cttz/ctlz/ctpop